Go to Main Content

Georgetown University

HELP | EXIT

Detailed Course Information

 

Fall 2017
Oct 20, 2017
Transparent Image
Information Select the desired Level or Schedule Type to find available classes for the course.

PHYS 506 - Quantum Mechanics II
This course is an introduction to the more advanced ideas of quantum mechanics. The learning goals are for the student to be able to perform advanced quantum mechanics calculations and to acquire the minimum set of tools needed for independent research. In addition, this course will help develop a better understanding of what quantum mechanics means and how one interprets experiments with quantum understanding. We will begin with the development of degenerate perturbation theory with application to the atomic fine structure. Next we talk about scattering and describe the phenomena of a Feshbach resonance. We then describe time-dependent phenomena in quantum mechanics, including time-ordered products, evolution operators, and perturbation theory. We also briefly describe Fermi's golden rule, the sudden approximation, and the creation of light from atomic hydrogen. Next we will describe the interaction of atoms with lasers and magnetic fields including trapping atoms and the Jaynes-Cummings model. Then we move onto Fermionic problems, starting with the creation and annihilation operators and how they apply to simple models of interacting particle, followed by a thorough discussion of the Hubbard model, which illustrates many different correlated phenomena ranging from antiferromagnetism to ferromagnetism.

3.000 Credit hours
3.000 Lecture hours
0.000 Lab hours

Levels: MN or MC Graduate, Undergraduate
Schedule Types: Lecture

Physics Department

Restrictions:
Must be enrolled in one of the following Levels:     
      MN or MC Graduate

Return to Previous New Search
Transparent Image
Skip to top of page
Release: 8.7.2